|
Greenstone belts are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that occur within Archaean and Proterozoic cratons between granite and gneiss bodies. The name comes from the green hue imparted by the colour of the metamorphic minerals within the mafic rocks. Chlorite, actinolite and other green amphiboles are the typical green minerals. A greenstone belt is typically several dozens to several thousand kilometres long and although composed of a great variety of individual rock units, is considered a 'stratigraphic grouping' in its own right, at least on continental scales. Typically, a greenstone belt within the greater volume of otherwise homogeneous granite-gneiss within a craton contains a significantly larger degree of heterogeneity and complications and forms a tectonic marker far more distinct than the much more voluminous and homogeneous granites. Additionally, a greenstone belt contains far more information on tectonic and metamorphic events, deformations and palaeogeologic conditions than the granite and gneiss events, because the vast majority of greenstones are interpreted as altered basalts and other volcanic or sedimentary rocks. As such, understanding the nature and origin of greenstone belts is the most fruitful way of studying Archaean geological history. Greenstone belts are basically metamorphosed volcanic belts. == Nature and formation == Greenstone belts have been interpreted as having formed at ancient oceanic spreading centers and island arc terranes. Greenstone belts are primarily formed of volcanic rocks, dominated by basalt, with minor sedimentary rocks inter-leaving the volcanic formations. Through time, the degree of sediment contained within greenstone belts has risen, and the amount of ultramafic rock (either as layered intrusions or as volcanic komatiite) has decreased. There is also a change in the structure and relationship of greenstone belts to their basements between the Archaean where there is little clear relationship, if any, between basalt-peridotite sheets of a greenstone belt and the granites they abut, and the Proterozoic where greenstone belts sit upon granite-gneiss basements and/or other greenstone belts, and the Phanerozoic where clear examples of island arc volcanism, arc sedimentation and ophiolite sequences become more dominant. This change in nature is interpreted as a response to the maturity of the plate tectonics processes throughout the Earth's geological history. Archaean plate tectonics did not take place on mature crust and as such the presence of thrust-in allochthonous greenstone belts is expected. By the Proterozoic, magmatism was occurring around cratons and with established sedimentary sources, with little recycling of the crust, allowing preservation of more sediments. By the Phanerozoic, extensive continental cover and lower heat flow from the mantle has seen greater preservation of sediments and greater influence of continental masses. Greenstones, aside from containing basalts, also give rise to several types of metamorphic rocks which are used synonymously with 'metabasalt' et cetera; greenschist, whiteschist and blueschist are all terms spawned from the study of greenstone belts. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「greenstone belt」の詳細全文を読む スポンサード リンク
|